FPGA Acceleration of CNNs-Based Malware Traffic Classification
نویسندگان
چکیده
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملFPGA-based Acceleration of Shortest Path Computation
There exist several practical applications that require high-speed shortest path computations. In many situations, especially in embedded applications, an FPGA-based accelerator for computing the shortest paths can help to achieve high performance at low cost. This paper presents an FPGA-based distributed architecture for solving the single-source shortest path problem in a fast and efficient m...
متن کاملExploring Timeline-Based Malware Classification
Over the decades or so, Anti-Malware (AM) communities have been faced with a substantial increase in malware activity, including the development of ever-more-sophisticated methods of evading detection. Researchers have argued that an AM strategy which is successful in a given time period cannot work at a much later date due to the changes in malware design. Despite this argument, in this paper,...
متن کاملFPGA Based Acceleration for Image Processing Applications
Image processing is considered to be one of the most rapidly evolving areas of information technology, with growing applications in all fields of knowledge. It constitutes a core area of research within the computer science and engineering disciplines given the interest of potential applications ranging from image enhancing, to automatic image understanding, robotics and computer vision. The pe...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2020
ISSN: 2079-9292
DOI: 10.3390/electronics9101631